Determination of the ANC and spectroscopic factor for 15 C from neutron transfer reactions 14 C(d,p) 15 C and 13 C(14 C, 15 C) 12 C

M. McCleskey, A. M. Mukhamedzhanov, R. E. Tribble, L. Trache, E. Simmons, A. Banu, V. Goldberg, X. F. Chen, and Y. -W. Lui

The neutron capture rate of ¹⁴C is of interest in both inhomogeneous big bang nucleosynthesis and also in CNO cycles that can take place in the neutron-rich environment found in the helium burning region of post main sequence stars [1,2]. The ¹⁴C(n, γ)¹⁵C reaction serves as the limiting reaction in this process. Furthermore, ¹⁴C(n, γ)¹⁵C is being used as a test case for the indirect determination of neutron capture rates at low energies on neutron-rich nuclei using neutron-transfer reactions at laboratory energies. Our approach combines information from the peripheral reaction of 12 MeV/u ¹⁴C on a thin ¹³C target and the non-peripheral reaction of 60 MeV deuterons on a thin ¹⁴C target.

 $^{13}C(^{14}C,^{15}C)^{12}C:$

This reaction is peripheral and is being used to determine the ANC for ¹⁵C. The experiment was performed using a radioactive ¹⁴C beam accelerated by the K500 cyclotron which reacted with a thin ¹³C target. The reaction products were analyzed by the MDM spectrometer and the MDM detector. A gold target of known thickness was used for calibration. Both the elastic and transfer reactions of ¹⁴C on ¹³C were measured. The reaction products are identified by their position in the focal plane of the MDM detector (Fig 1).

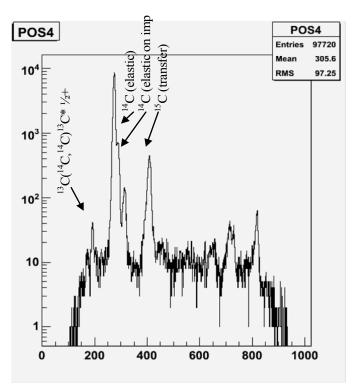
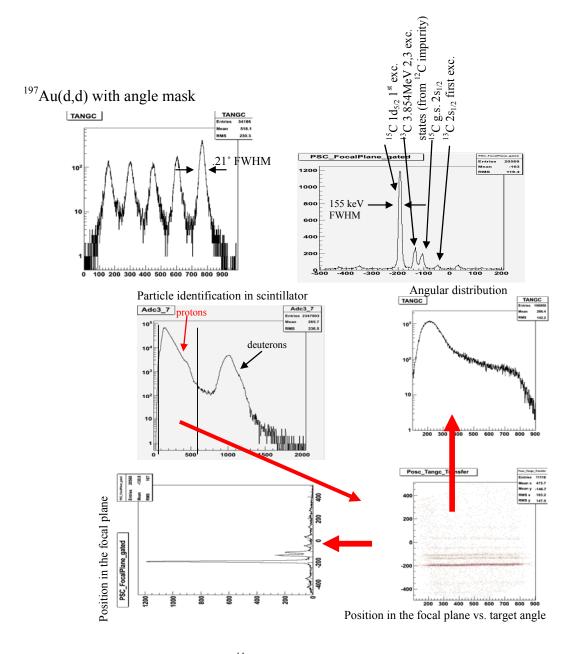



Figure 1. Particle identification in the focal plane

¹⁴C(d,p)¹⁵C:

This experiment, performed with a deuteron energy of 60 MeV, will be combined with the previous experiment to determine the spectroscopic factor since at this energy the reaction is not peripheral. The reaction products were analyzed using the MDM spectrometer and the repaired Oxford detector. It was the first (d,p) measurement at this large energy, and detecting the proton with the Oxford

detector was a challenge due to the small energy loss signal. Again both elastic and transfer reactions were measured and elastic scattering on a gold foil was used for calibration. A summary of the preliminary results is shown in Fig. 2. Very good angular and energy resolution were obtained. [1] A Horvath *et al.*, Astrophys. J. **570**, 926 (2002).

Figure 2. Summary of the results of the ${}^{14}C(d,p)$ experiment.

[2] M Wiescher et al., J. Phys. G 25, R133 (1999).